Creativity with Ceramics

David S. Hornbrook, DDS, FAACD

Cementation Guides

- *Anterior adhesive cementation
- *Posterior adhesive cementation
- Posterior non-adhesive (Luting) cementation

Flexural Strength

♦ Powder/liquid ceramic: 100 mPa

❖ IPS Empress: 200 mPa

♦ E.Max: 400 mPa

❖ ZrO2: 650-1500 mPa

Fracture Toughness

In materials science, fracture toughness is a property which describes the ability of a material containing a crack to resist fracture, and is one of the most important properties of any material for many design applications

Fracture Toughness

- ❖IPS Empress: 1 K1c
- ❖Composites/Hybrid ceramics: 1.5 K1c
- E.Max/Celtra Duo: 2.0-3.0 K1c
- ♦ Lava Esthetic: 3.5-5.0 K1c
- Tetragonal ZrO2: 5.0+ K1c (Lava Plus, Katana STML, Bruxzir, etc)

Where do I use the Lava Esthetic?

- *Posterior single units
- Posterior 3 unit bridges (replacing premolars only: pontic width 9.0 mm)
- Anterior 3 unit bridges (replacing a single tooth: pontic width 11.0 mm)
- **♦** Anterior crowns on destroyers

Cantilever Bridges

What do we cement them with?

Depends upon prep design, amount of retention, and ability to isolate

Two surfaces we bond (or attempt) to: Tooth structure

- *Dentin
- **.**Enamel

Adhesive cementation is always the most ideal

- "total etch" followed by a 3step, 2-step, or Universal adhesive system
- ♣Resin Cement

Dentinal Adhesion Restorative Resin -Resin Layer Hybrid Zone

Dental Adhesive Systems

❖ Total-Etch and rinse systems (Complete removal of smear layer)
 ❖ 3-Step

Dental Adhesive Systems

- *Total-Etch and rinse systems (Complete removal of smear layer)
 - 3-Step
 - 2-Step

*Direct Restorations *Indirect where it can be polymerized with light *Veneers *Anterior all-ceramic crowns *Ceramic inlays/onlays

Dental Adhesive Systems

- ❖ Total-Etch and rinse systems (Complete removal of smear layer)
 - 3-Step
 - 2-Step
- \star Self-etch Systems (Dissoltuion of semar layer and incorporation in adhesive)
 - 2-Step

Limitations and applications of Self-etch 2-step adhesive Systems

- ◆ Direct Restorations
- Etch enamel with phosphoric acid, especially with Indirect

Dental Adhesive Systems

- ❖ Total-Etch and rinse systems (Complete removal of smear layer)
 - 3-Step
 - 2-Step
- \bigstar Self-etch Systems (Dissoltuion of semar layer and incorporation in adhesive)
 - •2-Step
 - **⋄**1-Step

Dental Adhesive Systems ❖ Total-Etch and rinse systems (Complete removal of smear layer) 3-Step 2-Step Self-etch Systems (Dissoltuion of semar layer and incorporation in adhesive) **⋄** 2-Step ❖ 1-Step * Select Etch, Universal Adhesive Systems Adhesive cementation using a resin cement is always the most ideal ♦ "total etch" followed by a 4th or 8 generation adhesive ♦ Dual Cure resin cement ❖Duolink (Bisco) **⋄***NX3 (Kerr)* Non-bonded posterior crown (ZrO2 with Adequate Retention) Clean tooth with Chlorahexadine Pumice (Consepsis Scrub; Ultradent)

Self-etching resin cement
BisCem (Bisco)
MaxCem Elite (Kerr)
Unicem Plus (3M)
BioActive Cements
TheraCem (Bisco)
Activa cement (Pulpdent)
Ceramir (Doxa Dental)

Potential advantages of alkaline pH:

- Promote apatite formation & healing of pulp tissue
- * Inhibition of bacterial growth
- Neutralize acidic bacterial by-products, prevent secondary caries

	TheraCem	Ceramir
Shear Bond Strength to Dentin (gel-cap method)	5.7 MPa	4.0 MPa
Shear Bond Strength to Cut Enamel (ultradent jig method)	18.0 MPa	2.2 MPa
Shear Bond Strength to Zirconia (sandblasted, no primer applied, ultradent jig method)	26.8 MPa	0
Calcium Release after 7 days	66 μg/cm²	70 μg/cm ²
Film Thickness	14 μm	14 μm
Flexural Strength	60 MPa	12 MPa
Compressive Strength	199 MPa	109 MPa
Radiopacity	2.4	2.4

Two surfaces we bond (or attempt) to: *Tooth structure *Dentin *Enamel *Restorative material

All-Ceramics

Results limited by your
Creativity and Imagination,
not the
Materials

IPS Empress

(Leucite reinforced glass ceramic)

e.Max

(lithium disilicate)

Zirconium oxide

(Full contour and core supported)

What do we adjust and polish with?

Desirable properties of our restorations **PFM** All-Ceramic Strength Strength Fit Fit Wear Compatibility Wear Compatibility Aesthetics Aesthetics Conservation of tooth Conservation of tooth Structure Structure Biocompatibility Biocompatibility Lab cost Lab cost

Review of scientific literature

Fracture strength of four-unit Y-TZP core designed with varying connector diameter: an in-vitro study

Larsson C,Holm L,Lovgren,Kokubo Y, Vult von Stryen J Oral Rehabili. 2007;34:702-709

Connector dimensions required 4 x 4 mm with ZrO2 frameworks. Metal supported PFD can have 2.5 x 2.5 mm

Fabrication techniques

(IPS Empress and e.Max)

- ❖Pressed: "Lost wax" technique
- Milled: CAD/CAM in- office or inlaboratory

Finishing Techniques

- Shaded or stained
- Cutback and layered
