

At Long Last:

Immunologic Approaches to Treatment of GI

Cancers

Richard M. Goldberg MD Director, WVU Cancer Institute

Disclosures

- Funded research:
 - Bayer
 - Merck
 - Sanofi
- Consulting and lectures:
 - Merck
 - Merck KGA
 - Taiho

Pretest

- Which molecular marker(s) are essential to determine whether a patient should be treated with a PD-1 inhibitor?
 - 1. IHC staining for PD-1 expression on tumor cells
 - 2. IHC staining for PD-1 expression on tumor infiltrating lymphocytes
 - IHC staining for mismatch repair proteins on tumor cells
 - 4. Both 2 and 3
 - 5. All of the above

Pretest

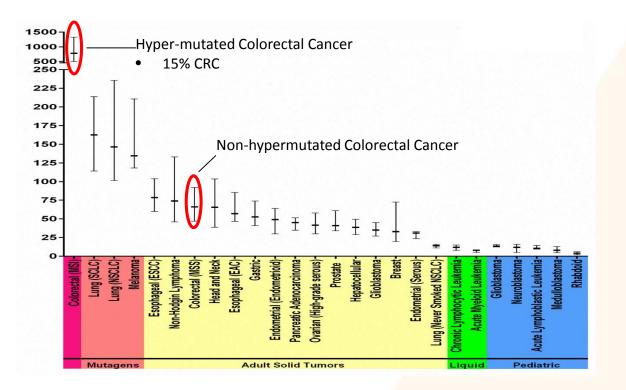
- Treatment with a PD-1 inhibitor has been associated with each of the following toxicities except:
- 1. Cardiomyopathy
- 2. Neutropenia
- 3. Hypothyroidism
- 4. New onset diabetes
- 5. Nausea, vomiting and diarrhea

Pretest

- Treatment with a PD-1 Inhibitor has led to responses in which of the following tumor types:
- 1. Colorectal cancer
- 2. Pancreatic cancer
- 3. Sarcomas
- 4. Anal cancers
- 5. All of the above

Today's Topics

- Background
- Gastric Cancer
- Colorectal Cancer
- MSI-H tumors regardless of histology & site of origin
- MSS tumors
- Anal Cancer
- Next steps


The Hottest Area in Cancer Drug Development

FDA Approvals Timeline for Immuno-Oncology Agents for Solid Tumors

nivolumab (non squamous lung CA)

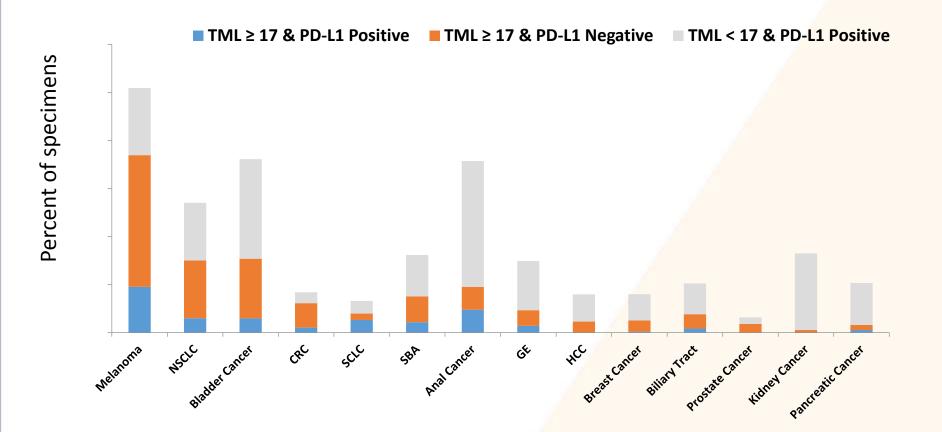
ipilimumab (MEL)	pembrolizumat	o (MEL) nivolumab		lumab us lung CA)	pembrolizumab (PD-L1+ NSCLC) nivolumab + ipilimumab (MEL, 1 st line ipilimumab (MEL, adjuvant)
March 2011	Sept 2014	Dec 20	014 March	2015	Oct 2015
nivolumab (RCC)	pembrolizumab (MEL, 1 st line)	atezolizumab (bladder CA)	pembrolizumab (HNSCC)	nivolumab (HNSCC)	pembrolizumab (NSCLC, 1 st line) atezolizumab (NSCLC)
Nov 2015	Dec 2015	May 2016	Aug 2016	Nov 2016	Oct 2016
nivolumab (bladder)	avelumab (merkel cell)	durvalumab, avelur pembrolizumat pembrolizumab 8	o + chemo (NSCLC	2, 1 st Line)	r)
Jan 2017	March 2017		May/July 2017		

Mutational Burden

Courtesy: Luis Diaz

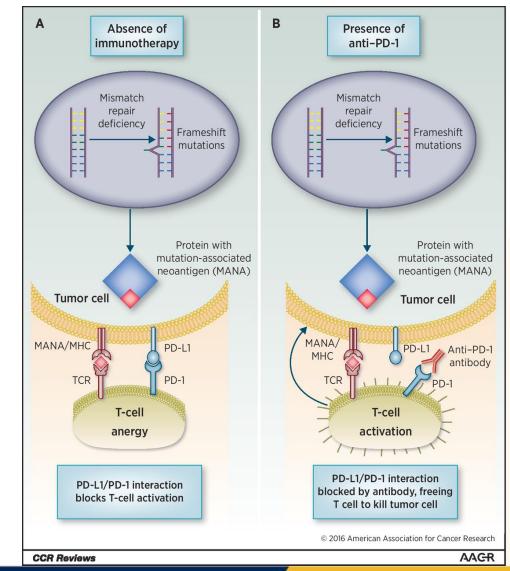
Characterization of Tumor Mutation Load (TML) in Solid Tumors

 ¹Mohamed E. Salem, ²Joanne Xiu, ³Heinz-Josef Lenz, ¹Michael B. Atkins, ⁴Philip Agop Philip, ⁵Jimmy J. Hwang, ²Zoran Gatalica, ²Nianqing Xiao, ¹Geoffrey Thomas Gibney, ⁶Wafik S. ElDeiry, ⁵Antoinette R. Tan, ⁵Edward S. Kim, ⁴Anthony Frank Shields, ⁵Derek Raghavan, and ¹John Marshall

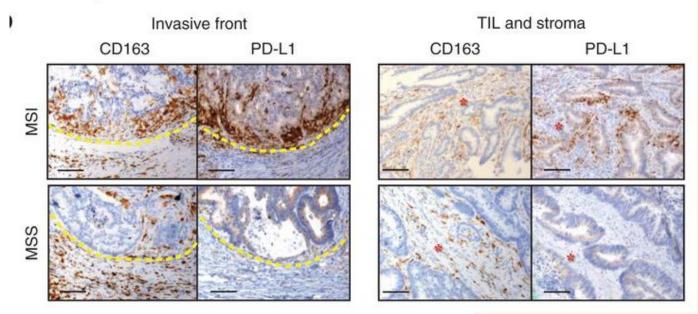

¹Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC • ²Caris Life Sciences, Phoenix, AZ • ³USC Norris Comprehensive Cancer Center, Los Angeles, CA • ⁴Karmanos Cancer Institute, Detroit, MI • ⁵Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC • ⁶Fox Chase Cancer Center, Philadelphia, PA

In Collaboration with Caris

Presented by


Combination of TML and PD-L1 expression

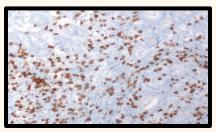
WVUCancerInstitute


Presented by:

Neoantigens

Jonathan C. Dudley et al. Clin Cancer Res 2016;22:813-820

PD-L1+ Tumor Infiltrating Myeloid Cells


Cd163: myeloid cells

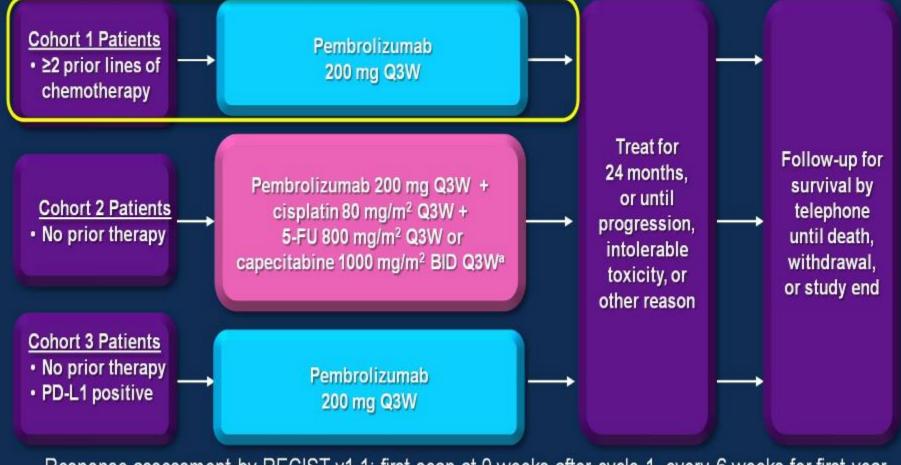
Nicolas J. Llosa et al. Cancer Discovery 2015;5:43-51

Microsatellite High (MSI-H, dMMR) Cancers That Have a High Mutational Burden

- Missing proteins that repair DNA replication errors: MSH2, MSH6, MLH1, PMS2.
- dMMR tumors are infiltrated with T cells
- dMMR/MSI-H cancers harbor thousands of mutations (hypermutated phenotype).
- Mutations encode proteins that can become immune system targets: aka mismatch-associate neoantigens or MANAs.

Regardless of tumor histology

ACA with CD8 T Cells


KEYNOTE-059 Cohort 1: Efficacy and Safety of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric Cancer

Charles S. Fuchs,¹ Toshihiko Doi,² Raymond WJ Jang,³ Kei Muro,⁴ Taroh Satoh,⁵ Manuela Machado,⁶ Weijing Sun,⁷ Shadia I. Jalal,⁸ Manish Shah,⁹ Jean-Phillipe Metges,¹⁰ Marcelo Garrido,¹¹ Talia Golan,¹² Mario Mandala,¹³ Zev A. Wainberg,¹⁴ Daniel V.T. Catenacci,¹⁵ Yung-Jue Bang,¹⁶ Jared Lunceford,¹⁷ Mary Savage,¹⁷ Jiangdian Wang,¹⁷ Minori Koshiji,¹⁷ Rita P. Dalal,¹⁷ Harry H. Yoon¹⁸

¹Yale Cancer Center, New Haven, CT, USA; ²National Cancer Center East; Chiba, Kashiwa, Japan; ³Princess Margaret Cancer Center, Toronto, ON, Canada; ⁴Aichi Cancer Center Hospital, Nagoya, Aichi, Japan; ⁵Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; ⁶Portuguese Institute of Oncology, Porto, Portugal; ⁷University of Pittsburgh, Pittsburgh, PA, USA; ⁸Indiana University School of Medicine, Indianapolis, IN, USA; ⁹Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA; ¹⁰Centre Hospitalier Regional Universitaire (CHRU) de Brest -Hopital Morvan, Brest, CEDEX, France; ¹¹Pontificia Universidad Católica de Chile, Santiago, Chile; ¹²Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel; ¹³ASST Papa Giovanni XXIII, Bergamo, Italy; ¹⁴Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; ¹⁶University of Chicago Medicine, Chicago, IL, USA; ¹⁶Seoul National University Hospital, Seoul, South Korea; ¹⁷Merck & Co., Inc., Kenilworth, NJ; ¹⁸Mayo Clinic, Rochester, MN, USA

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse.

KEYNOTE-059 (NCT02335411): Phase 2 Multicohort Study of Pembrolizumab for G/GEJ Adenocarcinoma

Response assessment by RECIST v1.1: first scan at 9 weeks after cycle 1, every 6 weeks for first year,

#ASC017

PRESENTED AT: ASCO ANNUAL MEETII Slides are the property of the author. Permission required for reuse.

followed by every 9 weeks

Capecitabine was administered only in Japan

Baseline Disease Characteristics

Characteristic, n (%)	N = 259		
ECOG PS			
0	107 (41.3)		
1	151 (58.3)		
Location of primary tumor			
Gastric	125 (48.3)		
GEJ	133 (51.4)		
Number of prior therapies			
2	134 (51.7)		
3	75 (29.0)		
≥4	50 (19.3)		

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author, Permission required for reuse.

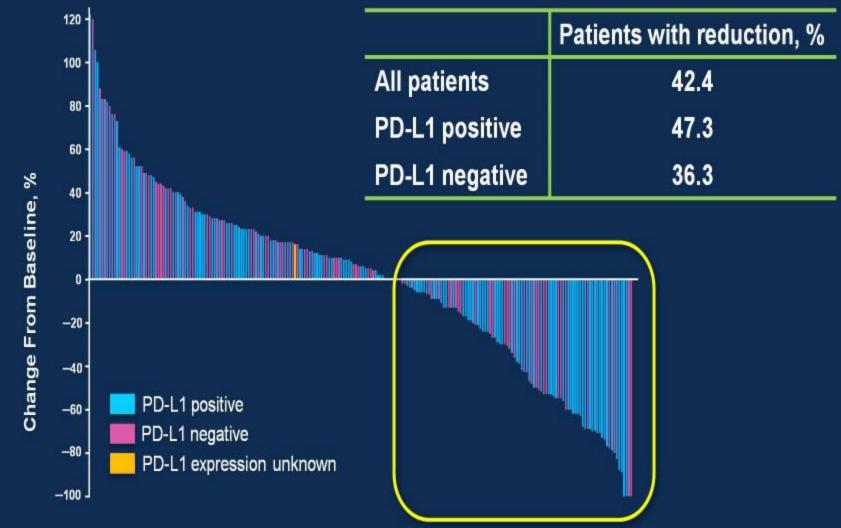
Data cutoff: January 16, 2017

Response in All Patients

Response ^a	N = 259			
	%	95% CI		
ORR (CR + PR)	11.6	8.0-16.1		
CR	2.3	0.9-5.0		
PR	9.3	6.0-13.5		
SD	16.2	11.9-21.3		
PD	56.0	49.7-62.1		
DCR ^b	27.0	21.7-32.9		

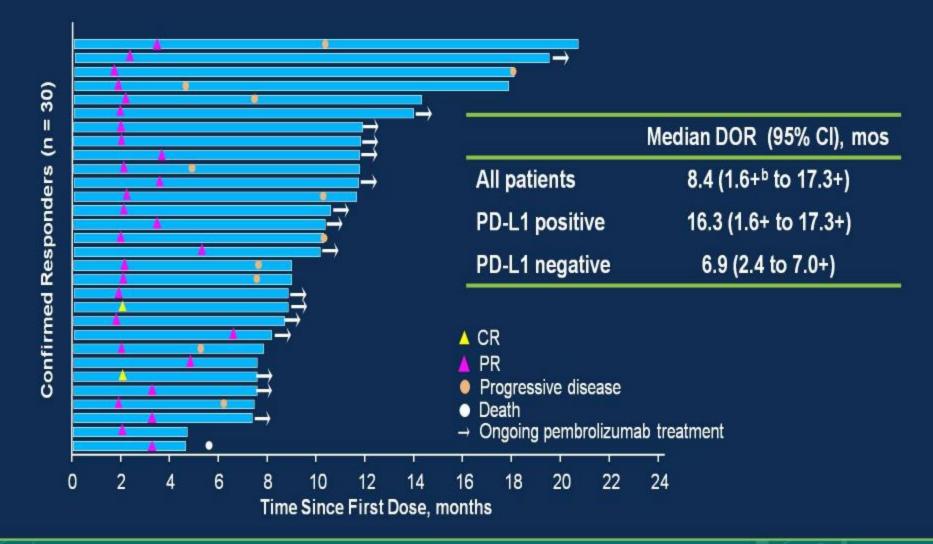
Median (range) follow-up: 5.8 months (0.5-21.6)

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author, Permission required for reuse.

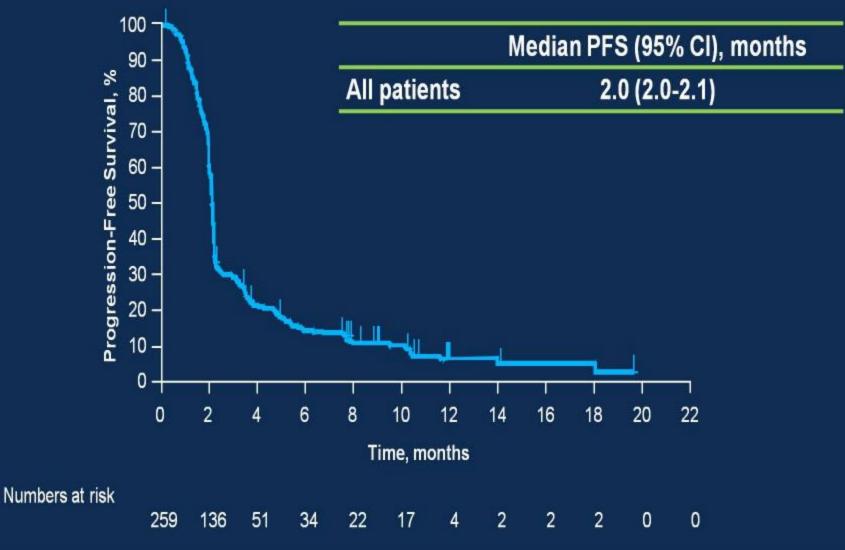

^aOnly confirmed responses were included [©]CR + PR + SD≥2 months Data cutoff: January 16, 2017

Response by PD-L1 Expression

Response ^a	PD-L1 Posi	tive (n = 148)	PD-L1 Negative (n = 109)		
	% 95% CI		%	95% CI	
ORR	15.5	10.1-22.4	6.4	2.6-12.8	
CR	2.0	0.4-5.8	2.8	0.6-7.8	
PR	13.5	8.5-20.1	3.7	1.0-9.1	
DCR ^b	33.1	25.6-41.3	19.3	12.3-27.9	


PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse. ^aOnly confirmed responses were included ^bCR + PR + SD≥2 months Data cutoff: January 16, 2017

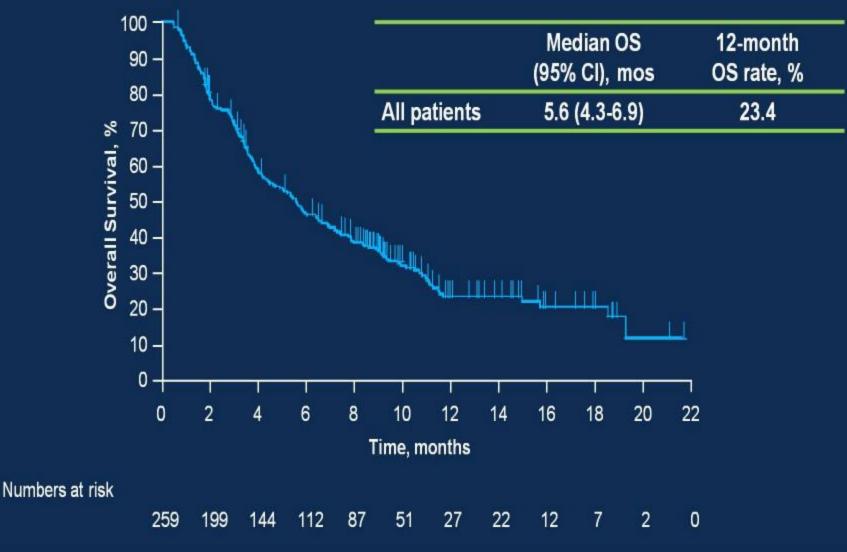
Maximum Percentage Change From Baseline in Target Lesion Size^a


PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse. ^aOnly patients with measurable disease per RECIST v1.1 by central review at baseline who had ≥1 postbaseline assessment were included (n = 223) Data cutoff: January 16, 2017

Treatment Exposure^a and Duration of Response

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author, Permission required for reuse. Patients with measurable disease per RECIST v1.1 by central review at baseline who had ≥1 postbaseline assessment (n = 30). Bar length indicates time to last imaging assessment. No progressive disease at last disease assessment. Data cutoff: January 16, 2017.

PFS in All Patients



PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

Slides are the property of the author. Permission required for reuse.

Data cutoff: January 16, 2017

OS in All Patients

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

Slides are the property of the author. Permission required for reuse.

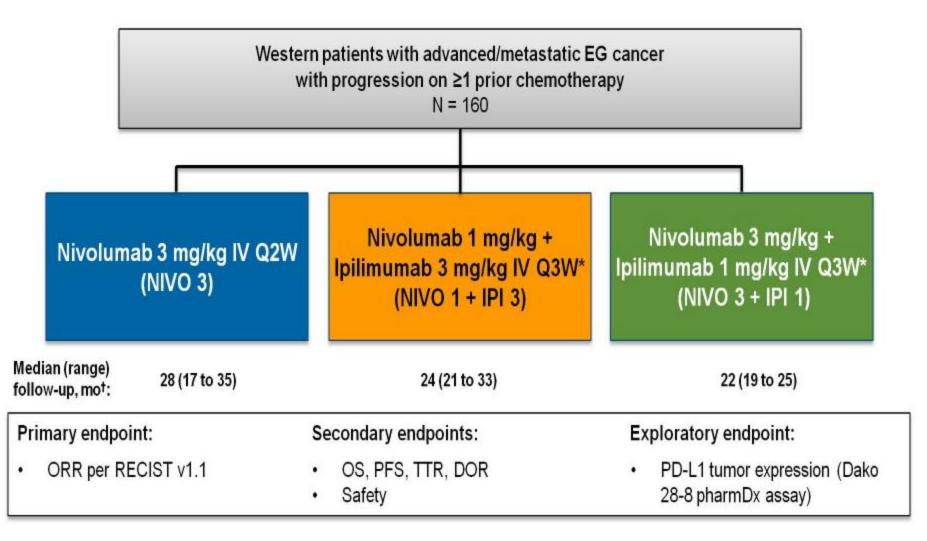
Data cutoff: January 16, 2017

Response by MSI Status (n = 174)

4.0% of patients were MSI-High

Response ^a	MSI-Hig	h (n = 7)	Non–MSI-High (n = 167)		
	%	95% CI	%	95% CI	
ORR	57.1	18.4-90.1	9.0	5.1-14.4	
CR	14.3	0.4-57.9	2.4	0.7-6.0	
PR	42.9	9.9-81.6	6.6	3.3-11.5	
DCR ^b	71.4	29.0-96.3	22.2	16.1-29.2	
PRESENTED AT: ASCO ANNUAL MEETING '17 Slides are the property of the author. Permission required for reuse	#ASC017		-2	[®] Only confirmed responses were inclu ^b CR + PR + SD≥2 mo Data cutoff, January 16, 2	

Data cutoff: January


Nivolumab ± Ipilimumab in Patients With Advanced/Metastatic Chemotherapy-Refractory Gastric, Esophageal, or Gastroesophageal Junction Cancer: CheckMate 032 Study

Yelena Y. Janjigian,¹ Patrick A. Ott,² Emiliano Calvo,³ Joseph W. Kim,⁴ Paolo A. Ascierto,⁵ Padmanee Sharma,⁶ Katriina Peltola,⁷ Dirk Jaeger,⁸ Jeffrey Evans,⁹ Filippo de Braud,¹⁰ Ian Chau,¹¹ Marina Tschaika,¹² Christopher T. Harbison,¹² Weiguo Cai,¹² Johanna Bendell,¹³ Dung T. Le¹⁴

¹Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ²Dana-Farber Cancer Institute, Boston, MA; ³START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain; ⁴Yale Cancer Center, New Haven, CT; ⁵Istituto Nazionale Tumori IRCCS, Naples, Italy; ⁶The University of Texas MD Anderson Cancer Center, Houston, TX; ⁷Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; ⁸National Center for Tumor Diseases, University Hospitals Heidelberg, Heidelberg, Germany; ⁹Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK; ¹⁰Fondazione IRCCS Istituto Tumori Milano, University of Milan, Milan, Italy; ¹¹Royal Marsden Hospital, London and Surrey, UK; ¹²Bristol-Myers Squibb, Princeton, NJ; ¹³Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ¹⁴Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse.

Checkmate 032 EG Cohort

DOR, duration of response; EG, esophagogastric (including gastric/esophageal/gastroesophageal junction cancer); TTR, time to response.

* Nivolumab + ipilimumab administered for 4 cycles followed by nivolumab 3 mg/kg IV Q2W.

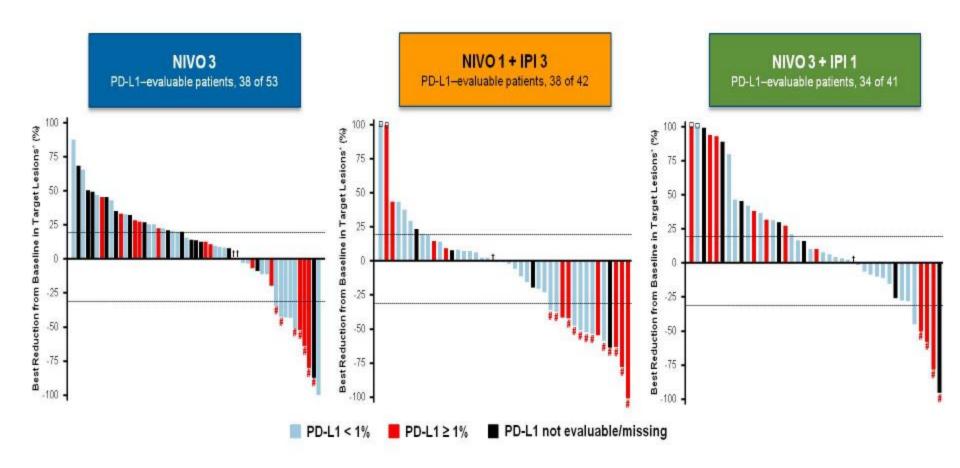
[†]Time from first dose to data cut-off; follow-up was shorter for patients who died prior to data cut-off.

Baseline Characteristics

Patients, n (%)	NIVO 3 n = 59	NIVO 1 + IPI 3 n = 49	NIVO 3 + IPI 1 n = 52
Age, median (range), years	60 (29 to 80)	53 (27 to 77)	58 (19 to 81)
≥65 years	17 (29)	10 (20)	17 (33)
Male	45 (76)	34 (69)	45 (87)
Race			
White	56 (95)	46 (94)	50 (96)
Black	3 (5)	1 (2)	1 (2)
Asian/other	0	2 (4)	1 (2)
Primary site			
Gastric	19 (32)	22 (45)	18 (35)
GEJ/esophageal	40 (68)	27 (55)	34 (65)
Number of prior regimens			
0	0	1 (2)	0
1	10 (17)	6 (12)	16 (31)
2	20 (34)	19 (39)	16 (31)
3	19 (32)	11 (22)	13 (25)
>3	10 (17)	12 (24)	7 (13)
PD-L1 tumor expression, n/N (%)*			
≥1%	16/42 (38)	10/42 (24)	13/43 (30)
<1%	26/42 (62)	32/42 (76)	30/43 (70)

* PD-L1 tumor expression rates reported according to the number of patients with quantifiable samples. PD-L1 was quantifiable in 71%, 86%, and 83% of patients in the NIVO 3, NIVO 1 + IPI 3, and NIVO 3 + IPI 1 treatment groups, respectively.

Objective Response

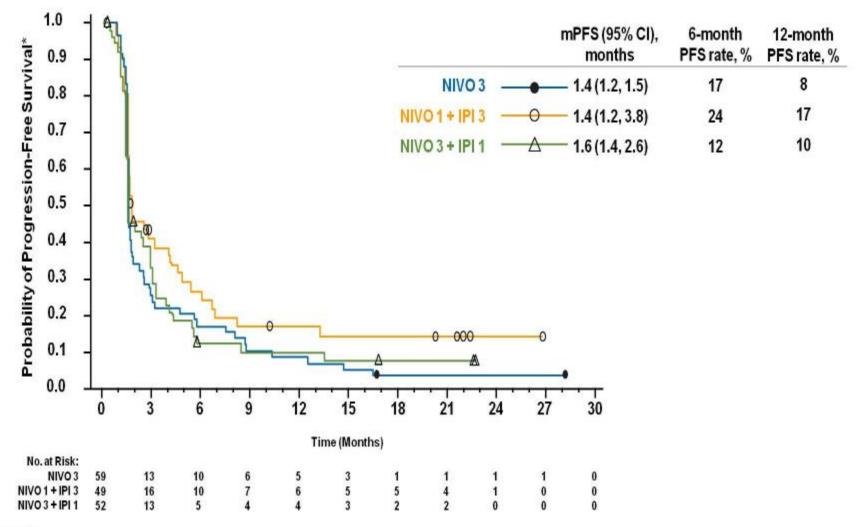

	NIVO 3 n = 59	NIVO 1 + IPI 3 n = 49	NIVO 3 + IPI 1 n = 52
ORR, n (%)*	7 (12)	12 (24)	4 (8)
[95% CI]	[5, 23]	[13, 39]	[2, 19]
BOR, n (%)*			
Complete response	1 (2)	1 (2)	0
Partial response	6 (10)	11 (22)	4 (8)
Stable disease	12 (20)	8 (16)	15 (29)
Progressive disease	34 (58)	23 (47)	24 (46)
Not evaluable	6 (10)	6 (12)	9 (17)
DCR, n (%)†	19 (32)	20 (41)	19 (37)
Median TTR (range), months	1.6 (1.2 to 4.0)	2.7 (1.2 to 14.5)	2.6 (1.3 to 2.8)
Median DOR (95% CI), months	7.1 (3.0, 13.2)	7.9 (2.8, NE)	NR (2.5, NE)

BOR, best objective response; DCR, disease control rate; NR, not reached, NE, not estimable.

* Investigator review.

[†] Patients with a BOR of complete response, partial response, or stable disease.

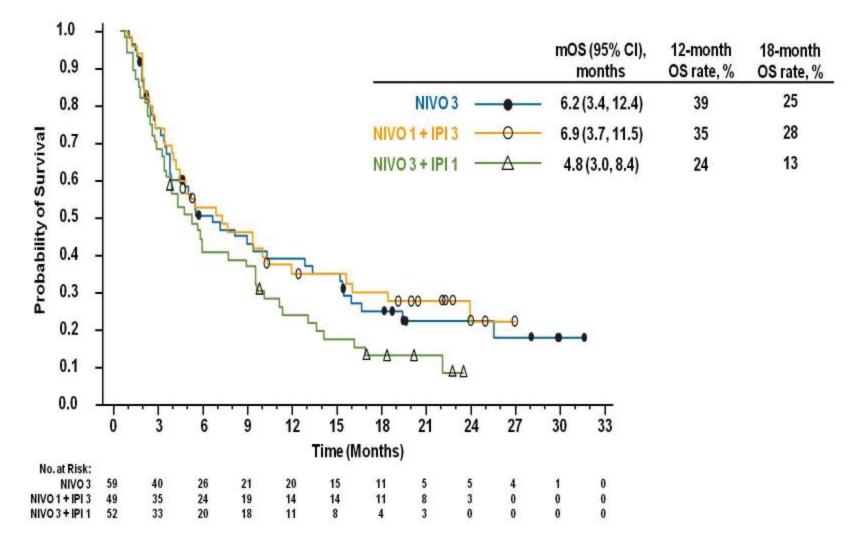
Best Reduction in Target Lesions


* Investigator review.

Patients with confirmed response (complete or partial response).

⁺ Patients with 0% best reduction in target lesion, including 3 patients with PD-L1 ≥1% (NIVO 3, n=2; NIVO 3 + IPI 1, n=1) and 1 patient with PD-L1 <1% (NIVO 1 + IPI 3).

change truncated to 100%


Progression-Free Survival

mPFS, median PFS

* Investigator review.

Overall Survival

mOS, median OS.

Treatment-Related Adverse Events

	NIVO 3 n = 59		NIVO 1 + IPI 3 n = 49		NIVO 3 + IPI 1 n = 52	
Patients, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TRAE	41 (69)	10 (17)	41 (84)	23 (47)	39 (75)	14 (27)
Serious TRAEs	6 (10)	3 (5)	21 (43)	17 (35)	13 (25)	9 (17)
TRAEs leading to treatment discontinuation	2 (3)	2 (3)	10 (20)	10 (20)	7 (13)	5 (10)
TRAEs in ≥15% of patients in any treatment arm						
ALT increased	5 (8)	2 (3)	8 (16)	7 (14)	5 (10)	2 (4)
AST increased	7 (12)	3 (5)	8 (16)	5 (10)	2 (4)	1 (2)
Decreased appetite	9 (15)	0	5 (10)	0	3 (6)	0
Diarrhea	9 (15)	1 (2)	15 (31)	7 (14)	5 (10)	1 (2)
Fatigue	20 (34)	1 (2)	14 (29)	3 (6)	10 (19)	0
Pruritus	10 (17)	0	9 (18)	1 (2)	12 (23)	0
Rash	5 (8)	0	10 (20)	0	8 (15)	0

One grade 5 TRAE was reported (tumor lysis syndrome in a patient treated with NIVO 3 + IPI 1)

Two High Impact Publications NEJM and Science

Team: Hopkins, NCI, OSU, Providence Cancer Center in Portland OR, Stanford, UPMC, WVU, Swim Across America, and Merck

PD-1 blockade in tumors with mismatch-repair deficiency

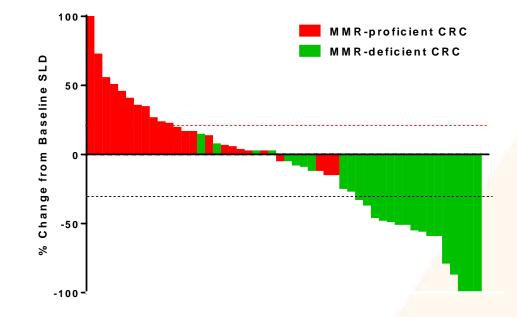
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, **Goldberg RM**, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr. <u>N Engl J Med</u>. 2015 Jun25;372(26)2509-20. Epub 2015 May 30. PMID: 26028255.

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, **Goldberg RM**, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Science 2017;357(6349):409-413. Epub 2017 June 8. PMID: 28596308.

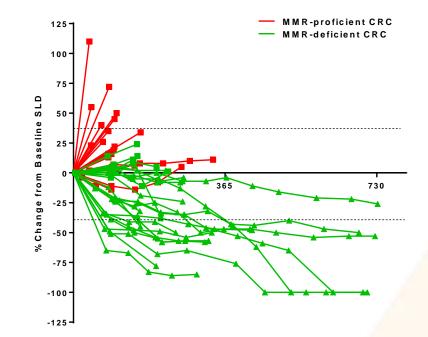
Keynote-016: Study Cohorts

Colorectal Cancers


<u>Cohort A</u> Deficient in Mismatch Repair (n=28) <u>Cohort B</u> Proficient in Mismatch Repair (n=25)

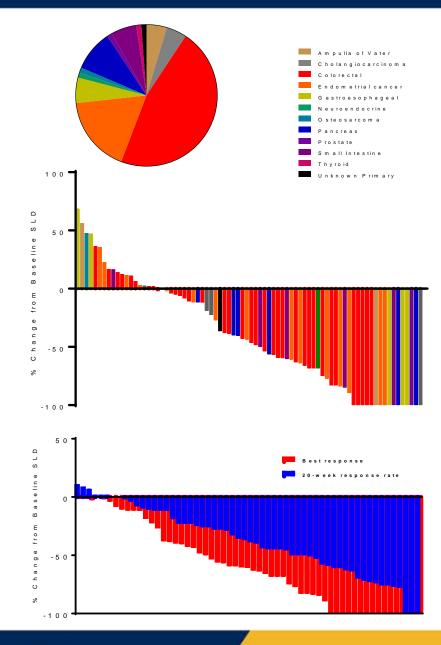
Non-Colorectal Cancers

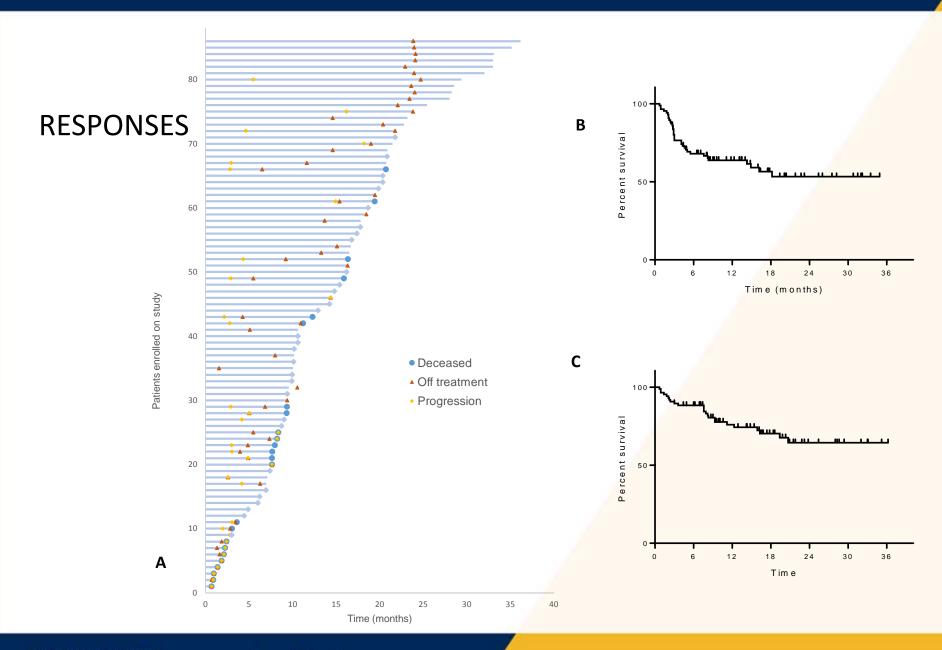
<u>Cohort C</u> Deficient in Mismatch Repair (n=30)


• Anti-PD1 (Pembrolizumab) – 10 mg/kg every 2 weeks

Colorectal Cancer: Best Radiographic Responses

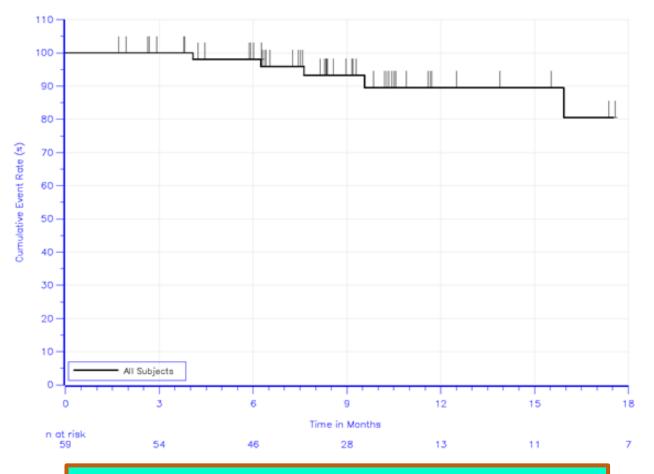
No PRs or CRs in MMR-proficient CRC


Colorectal Cancer: Radiographic Responses



Response By Tumor Type

		response rate	DOR range
	N	n (%)	(months)
CRC	90	32(36%)	(1.6+, 22.7+)
Non-CRC	59	27(46%)	(1.9+, 22.1+)
Endometrial	14	5 (36%)	(4.2+, 17.3+)
Biliary	11	3 (27%)	(11.6+, 19.6+)
Gastric or GE	9	5 (56%)	(5.8+, 22.1+)
junction			
Pancreatic	6	5 (83%)	(2.6+, 9. <mark>2+)</mark>
Small intestinal	8	3 (38%)	(1.9+, <mark>9.1+)</mark>
Breast	2	PR, PR	(7. <mark>6, 15.9)</mark>
Prostate	2	PR, SD	9.8+
Bladder	1	NE	
Esophageal	1	PR	18.2+
Sarcoma	1	PD	
Thyroid	1	NE 🖌	
Retroperitoneal	1	PR	7.5+
Small cell lung	1	CR	8.9+


RESPONSES

Duration of Response

Japlan-Meier Estimates of Response Duration in Subjects with Confirmed Response Based on IRC Assessment per RECIST 1.1 (ASaT Population in sBLA)

Median DOR (mos): Not reached (1.6+ - 22.7+)



Fig. 3 Mismatch repair deficiency across 12,019 tumors.

A New Paradigm in FDA Approval That is Agnostic to Histology and Primary Site: Pembrolizumab Approved for MSI-H or Mismatch Repair Deficient Tumors

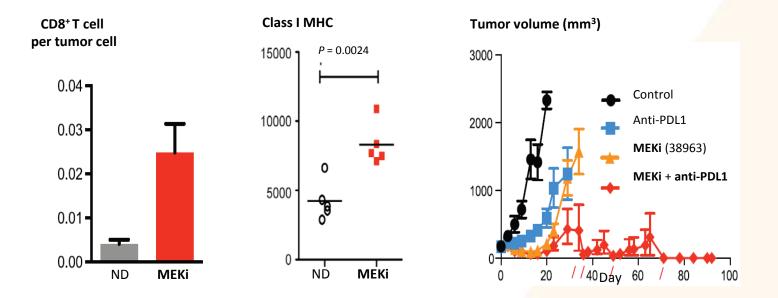
• for the treatment of adult and pediatric patients with unresectable or metastatic,

microsatellite instability-high (MSI-H) or mismatch repair deficient

- solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
- colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan

• pembrolizumab 200mg every 3 weeks for adults and 2mg/kg (up to 200mg) every 3 weeks for children

T cells on the lookout for neoantigens


Clinical activity and safety of cobimetinib and atezolizumab in colorectal cancer

Johanna Bendell,¹ Tae Won Kim,² Boon Cher Goh,³ Jeffrey Wallin,⁴ Do-Youn Oh,⁵ Sae-Won Han,⁵ Carrie Lee,⁶ Matthew D. Hellmann,⁷ Jayesh Desai,⁸ Jeremy Lewin,⁹ Benjamin J. Solomon,¹⁰ Laura Q. Chow,¹¹ Wilson H. Miller Jr,¹² Justin Gainor,¹³ Keith Flaherty,¹³ Jeffrey Infante,¹ Meghna Das Thakur,⁴ Paul Foster,⁴ Edward Cha,⁴ Yung-Jue Bang⁵

¹Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ²Asan Medical Center, Seoul, South Korea; ³Cancer Science Institute of Singapore, National University of Singapore, Singapore; ⁴Genentech, Inc., South San Francisco, CA; ⁵Seoul National University Hospital, Seoul, South Korea; ⁶UNC Lineberger Comprehensive Cancer Center, University of North Carolina – Chapel Hill, North Carolina; ⁷Memorial Sloan Kettering Cancer Center, New York, NY; ⁸Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia; ⁹Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; ¹⁰Peter MacCallum Cancer Center, Melbourne, VIC, Australia; ¹¹University of Washington, Seattle, WA; ¹²Segal Cancer Center and Jewish General Hospital, McGill University, Montreal, QC, Canada; ¹³Massachusetts General Hospital, Boston, MA

PD-L1 and MEK Inhibition: A Rational Combination

 MEK inhibition alone can result in intratumoral T-cell accumulation and MHC I upregulation, and synergizes with an anti-PDL1 agent to promote durable tumor regression¹

• To examine the possible benefits of MEK inhibition with an anti-PDL1 agent, we evaluated cobimetinib + atezolizumab in patients with advanced solid tumors

MHC, major histocompatibility complex; ND, no drug (vehicle alone). CT26 (KRASmt) CRC models. 1. Ebert et al. *Immunity* 2016.


Efficacy: Confirmed Objective Response

Confirmed Response per RECIST v1.1	KRAS mutant CRC Cohort (n = 20)	All CRC Patients (N = 23)
ORR (95% CI)	20% (5.7, 43.7)	17% (5.0, 38.8)
PR	20%	17%
SD	20%	22%
PD	50%	52%
NE	10%	9%

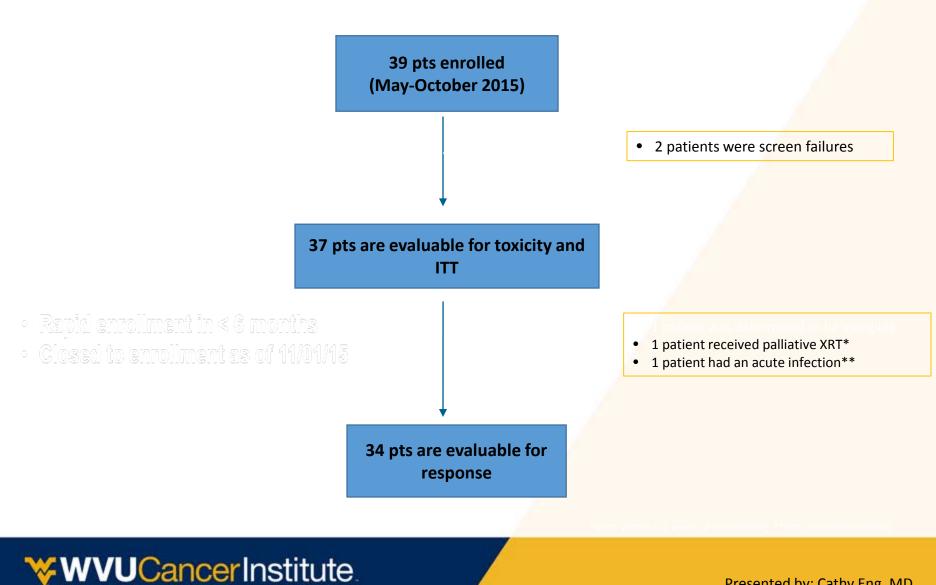
• Response did not correlate with PD-L1 status: IC0 (n = 2), IC1 (n = 1) and IC3 (n = 1)

NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Efficacy: Duration of Treatment and Response

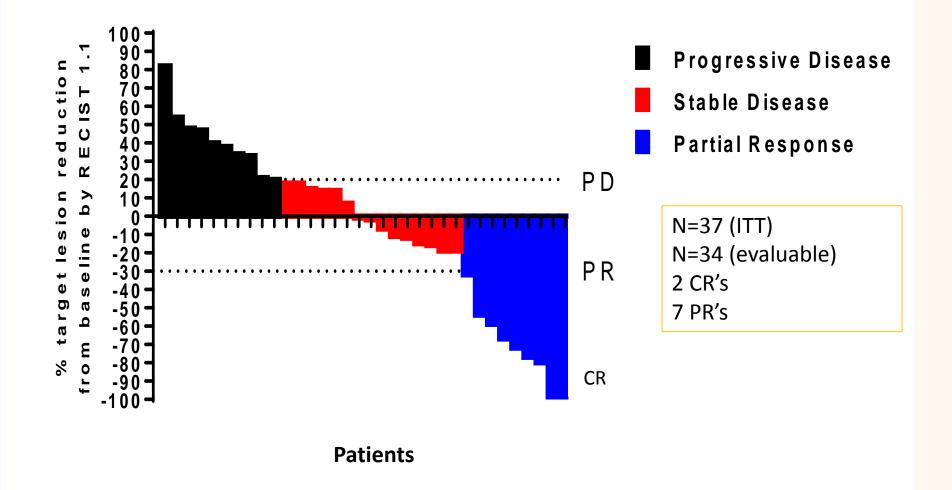
Efficacy-evaluable patients. Data cut-off February 12, 2016.

NCI9673: A Multi-Institutional ETCTN Phase II Study of Nivolumab in Refractory Metastatic Squamous Cell Carcinoma of the Anal Canal


V. Morris¹, K. Ciombor², M.E. Salem³, H. Nimeiri⁴, S. Iqbal⁵, P. Singh⁶, B. Polite⁷,

D. Deming⁸, E. Chan⁹, J.L. Wade¹⁰, T.S. Bekaii-Saab², H.E. Uronis¹¹, M.G. Pasia¹, G. Bland¹,

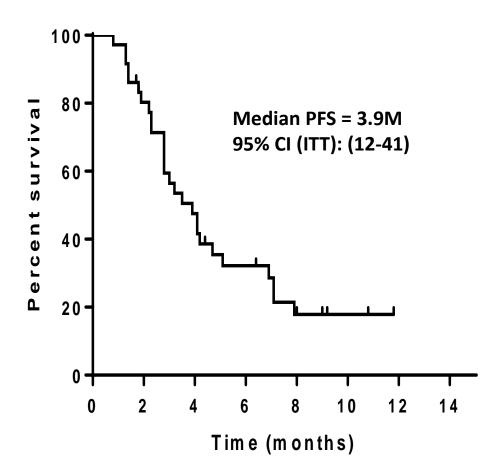
R.A. Wolff¹, A. Ohinata¹, C. Ohaji¹, J.E. Rogers¹, P. Sharma¹, <u>C. Eng¹</u>


¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Columbus, OH; ³Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ⁴Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL; ⁵University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA; ⁶Washington University, Siteman Cancer Center, St. Louis, MO; ⁷The University of Chicago, Chicago, IL; ⁸University of Wisconsin Hospitals and Clinics, Madison, WI; ⁹Vanderbilt University Medical Center, Nashville, TN; ¹⁰Cancer Care Center of Decatur, Decatur, IL; ¹¹Duke University Medical Center, Durham, NC

NCI9673: Consort Diagram

Presented by: Cathy Eng, MD

NCI9673: Primary Endpoint of Response Rate



WVUCancerInstitute

Presented by: Cathy Eng, MD

Secondary Endpoint:

Progression-free survival

Next Steps

- in MSI-H tumors
 - FOLFOX + a PD-1 inhibitor
 - In first line therapy
 - As adjuvant therapy
- In MSS tumors
 - Coupling with other IO agents
 - Nivo + ipi
- Exploring the importance of PD-1 expression
- Understanding
 - PD-1 vs PD-L1
 - Utility of different agents with the same targets

Post-test

- Which molecular marker(s) are essential to determine whether a patient should be treated with a PD-1 inhibitor?
 - 1. IHC staining for PD-1 expression on tumor cells
 - 2. IHC staining for PD-1 expression on tumor infiltrating lymphocytes
 - 3. IHC staining for mismatch repair proteins on tumor cells
 - 4. Both 2 and 3
 - 5. All of the above

Post-test

- Treatment with a PD-1 inhibitor has been associated with which of the following toxicities except:
- 1. Cardiomyopathy
- 2. Neutropenia
- 3. Hypothyroidism
- 4. New onset diabetes
- 5. Nausea, vomiting and diarrhea

Post-test

- Treatment with a PD-1 Inhibitor has led to responses in which of the following tumor types:
- 1. Colorectal cancer
- 2. Pancreatic cancer
- 3. Sarcomas
- 4. Anal cancers
- 5. All of the above

Questions?