Current Concepts in Initial Diagnosis & Management of Multiple Myeloma

Abraham S Kanate, M.D.

Assistant Professor of Medicine Osborn Hematopoietic Malignancy & Transplantation Program WVU

Presentation Aims

Diagnosis

- Prognostic markers and Management
- Treatment/Management of Multiple Myeloma
 - Transplant ineligible
 - Transplant eligible

Plasma Cell Maturation

Pathogeneis

Bianchi. Blood 2015

Interactions between MMC with cellular and acellular components of BM

- ▶ MGUS → SMM (AMM) → Multiple Myeloma
- Solitary Plasmacytoma
- AL Amyloidosis
- > POEMS
- Waldenstroms Macroglobulinemeia

Diagnosis

IMWG criteria, 2010 version⁶

MGUS	Serum M-protein < 3g/dL Light-chain restricted BM plasma cells < 10%
	No end-organ damage*
SMM	Serum M-protein \ge 3 g/dL and/or light-chain restricted BM plasma cells \ge 10%
	No end-organ damage*
Multiple myeloma	Serum M-protein (any level)
	Light-chain restricted BM plasma cells (any level)
	End-organ damage*

Based on expert discussions at the IMWG meeting in Stockholm in June 2013, it is anticipated that updated consensus criteria will be defined in the near future. Recent studies suggest that additional features such as BM plasmacytosis $\geq 60\%$,⁴⁸ an abnormal sFLC ratio ≥ 100 (involved kappa) or < 0.01 (involved lambda),³⁹ and/or focal BM lesions detected by functional imaging including PET-CT and/or MRI^{47,49} in asymptomatic individuals may warrant a clinical diagnosis of multiple myeloma.

*One or many of the following features: hypercalcemia with calcium level > 11.5 mg/dL, renal insufficiency with serum creatinine > 2.0 mg/dL, or estimated creatinine clearance < 40 mL/minute, normochromic normocytic anemia with a hemoglobin value < 10 g/dL (or a hemoglobin value < 2 g/dL below the lower limit of normal), and bone lesions (lytic lesions, severe osteopenia, or pathological fractures).⁶

MGUS Progression

- 1% per year progression. Relative risk 25x (MM), 46x (WM), 8.4x (AL amyloidosis), 2.4x (lymphoma), 8.5x (plasmacytoma)
- Risk stratification model: Serum M protein level ≥1.5 g/dL, non-IgG MGUS, and an abnormal serum FLC ratio predict progression over 20 years
 - ✓ 3 risk factors 58%
 - ✓ 2 risk factors -37%
 - ✓ 1 risk factor 21%
 - ✓ no risk factors 5%

Free light chain only MGUS – less risk of progression

Check B-J proteinuria

Serial monitoring important

Clinical Course

Probability of Progression to Active Multiple Myeloma or Primary Amyloidosis in Patients with Smoldering Multiple Myeloma or Monoclonal Gammopathy of Undetermined Significance

SMM/AMM Progression

N Engl J Med 2007;356:2582-90

(Very) High-risk AMM

Rajkumar V, NEJM 2011 Cancer. 2012

Definitions in Myeloma

• Clonal bone marrow plasma cells ≥10% and/or biopsy-proven bony or extramedullary plasmacytoma

and

- Myeloma defining events:
 - Hypercalcemia: serum calcium >0·25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2·75 mmol/L (>11 mg/dL)
 - Renal insufficiency: creatinine clearance 177 μmol/L (>2 mg/dL)
 - Anemia: Hb >20 g/L below the lower limit of normal, or Hb < 100 g/dL
 - Bone lesions: one or more osteolytic lesions on skeletal radiography, CT/PET
- Any one or more of the following biomarkers of malignancy:
 - Clonal bone marrow plasma cell percentage* ≥60%
 - Involved:uninvolved serum free light chain ratio § ≥100
 - >1 focal lesions on MRI studies or PET scan

Definitions in Myeloma

- Smoldering Multiple Myeloma (asymptomatic)
- Both criteria must be met -
 - Serum monoclonal protein (IgG or IgA) ≥30 g/L or urinary monoclonal protein ≥500 mg per 24 h

and/or

- clonal bone marrow plasma cells 10-60%
- Absence of myeloma defining events or amyloidosis

Durie-Salmon Criteria (Obsolete)

Major Criteria:

- Plasmacytomas
- Bone marrow showing > 30% plasma cells
- M-spike on SPEP: IgG > 3.5 g/dL or IgA > 2.0 g/dL; kappa or lambda light-chain excretion > 1.0 g/d on 24-h UPEP

Minor Criteria:

- Bone marrow showing 10–30% plasma cells
- M-spike present but of lesser magnitude than given above
- Lytic bone lesions.
- Normal IgM < 50 mg/dL, IgA < 100 mg/dL, or IgG < 600 mg/dL

Need at least one major and one minor or three minor including +*BM and M spike.*

Initial Diagnostic Workup

INITIAL DIAGNOSTIC WORKUP

CLINICAL PRESENTATION

QIM, SPEP & IFE should be done

• M-protein is detected by SPEP in 82% of the patients and by immunofixation in 93%

M-protein present

Kyle RA. Mayo Clinic Proc. 2003;78:21-33.

Rationale for Serum FLC Assay

- Diagnosis of LC myeloma can be missed if only SPEP and IFE are performed (but LC are always detectable in urine)
- Oligo-secretory MM cases where serum and urine electrophoresis and IFE are often normal
- Combination of SPEP, IFE and FLC is (99%) effective for screening all plasma cell dyscrasias (except AL or true non-secretory MM)
- After establishing diagnosis, 24hr urine studies are required

Durie-Salmon Staging (obsolete)

- Stage I
- Hemoglobin >10 g/dL
- Normal calcium
- No lytic bone lesions
- Low M-protein
 - IgG <5 g/dL
 - IgA <3 g/dL
 - Bence Jones <4 g/24h
- Stage II (not Stage I/III)

- Stage III
- Hemoglobin <8.5 g/dL
- Calcium >12 mg/dl (adjusted)
- Advanced lytic bone lesions
- High M-protein
 - IgG >7 g/dL
 - IgA >5 g/dL
 - Bence Jones >12 g/24h
- A) Creatinine <2 mg/dl
- B) Creatinine >2 mg/dl

International Staging System

Stage I:

- β_2 -microglobulin < 3.5 mg/L and albumin \ge 3.5 g/dL
- (median survival of 62 months)
- Stage II:
- Neither I nor III
- (median survival of 44 months) Stage III:
- Beta-2-microglobulin \geq 5.5 mg/L
- (median survival of 29 months)

Prognostic Factors in Myeloma IFM99-02 & 99-04

OS According to Risk Factors

No. of Risk Factors	Frequency (%)	Median OS
0	19.5	Not reached at 10
1	44.3	9.5
2	25.5	5.6
> 2	10.7	2.8

Years

Poor-prognosis factors

- age >55 years
- β2-microglobulin >5.5 mg/L
- t(4;14), del(17p), 1q gains

Prognostic Factors in Myeloma

- Age and performance status
- LDH
- ISS stage
- Conventional cytogenetics
 - Monosomy 13
 - Hypo-diploidy
 - Chromosome 1 abn ('p' del / 'q' gain)
- Fluorescent in situ hybridization
 - **t(4;14)**(p16;q32)
 - t(14:16); t(14;20)
 - del(17p)
 - t(11;14)(q13;q32)
- Abnormal FLC ratio of <0.03 or >32
- Plasma cell labeling index $\ge 3\%$

Months

Avet-Loiseau H. Blood. 2007;109:3489-3495. Snozek CH. Leukemia 2008; 22: 1933–1937. Fonseca R. Blood 2003; 101: 4569–4575.

Incorporating FISH into risk stratification of Myeloma

ISS – no patients got PI or imid HR-FISH - was defined as del(17p) and/or t(4;14) for ISS

R-ISS - incorporates the original ISS (B-2M and albumin), myeloma FISH (t[4;14], t[14;16], or del[17p]), and lactate dehydrogenase

Palumbo J Clin Oncol. 2015;33(26):2863-2869 Angela Dispenzieri Hematology 2016;2016:485-494

mSMART 2.0: Classification of Active MM

a Note that a subset of patients with these factors will be classified as high-risk by GEP

^b LDH >ULN and beta-2 M > 5.5 may indicate worse prognosis; ^cTrisomies may ameliorate

^d Prognosis is worse when associated with high beta-2 M and anemia

e t(11;14) may be associated with plasma cell leukemia; f Cut-offs vary

Therapeutic strategies

MGUS \rightarrow Every 6-12 months SMM/AMM \rightarrow Every 3-6 months for 1-2 years \rightarrow Evolving or Stable

N Engl J Med 2007;356:2582-90

Early vs. Deferred Treatment

Trial	Year	Number	Regimen	PFS	OS	Toxicity	Comments		
Hjorth	1993	50	Mel-Pred (early vs. deferred)	Imp	ND	2 acute leuk.	Median time to Rx in the deferred gp. was 12 months		
Riccardi	2000	145	Mel-Pred (early vs. deferred)	Imp	ND	U/A	Those randomized to observation and then progressed had worse		
Cochrane meta-analysis and review of 3 RCT – no survival advantage with									

early treatment

Trial	Year	Number	Regimen	ORR	TTP	PFS	OS	Toxicity
Witzig	2013	68	Zometa +/- Thalidomid e	0 Vs 37%	1.2 Vs 2.4	55% Vs 86%	ND	Neuropathy VTE

¹Hjorth et al. Eur J Haematol. Riccardi et al. Br J Cancer. 1994 ²Riccardi et al. Br J Cancer. 2000 82(7), 1254–1260. ³Cochrane Database Syst Rev. 2003;(1):CD004023 ²Leukemia (2013) 27, 220–225

N Engl J Med 2013;369:438-47

Smoldering Myeloma – to treat or not to treat?

Table 2. Definition of high-risk SMM Table 3. Cytogenetically defined risk-based classification of SMM Clonal BMPCs ≥10% and any one or more of the following: Cytogenetic finding Risk Serum M protein ≥30g/L High t(4;14) IgA SMM del(17p) Immunoparesis with reduction of 2 uninvolved immunoglobulin isotypes 1q gain Serum involved/uninvolved FLC ratio ≥ 8 (but <100) Intermediate Trisomies without IgH translocation Progressive increase in M protein level (evolving type of SMM; increase in serum M Standard Other IgH translocations including t(11;14), protein by ≥25% on 2 successive evaluations within a 6-month period) t(14;16), and t(14;20) Clonal BMPCs 50%-60% Presence of trisomies and IgH translocation, Abnormal PC immunophenotype (≥95% of BMPCs are clonal) and reduction of ≥1 except t(4;14) uninvolved immunoglobulin isotypes Monosomy13/del(13q) t(4;14) or del(17p) or 1g gain Low No abnormalities (normal or insufficient) Increased circulating PCs MRI with diffuse abnormalities or 1 focal lesion PET-CT with focal lesion with increased uptake without underlying osteolytic bone destruction

Apply the revised IMWG criteria – more patients eligible for therapy

Recommend MRI spine/pelvis or PET scan imaging in addition to skeletal survey – many in the observation arm of SMM progressed with bone disease

Case-by-case consideration to institute early treatment, especially rapidly increasing SPEP/IFE

Clinical trial referral

Observation for low and intermediate risk SMM; select HR-SMM

MM Therapeutic Principles

- Response to therapy = control disease
- Improve survival = PFS and OS
- Limit/resolve end organ damage
- Prevent or delay progression
- Considered treatable but incurable

» ... OR IS IT ?

IMWG criteria for response	e assessment including criteria for minimal residual disease (MRD)
Response Category	Response Criteria
IMWG MRD criteria (require	s a complete response as defined below)
Sustained MRD-negative	MRD negativity in the marrow (next-generation flow [NGF], next-generation sequencing [NGS], or both) and by imaging as defined below, confirmed minimum of 1 year apart. Subsequent evaluations can be used to further specify the duration of negativity (eg, MRD-negative at 5 years) [†]
Flow MRD-negative	Absence of phenotypically aberrant clonal plasma cells by NGF [‡] on bone marrow aspirates using the EuroFlow standard operation procedure for MRD detection in multiple myeloma (or validated equivalent method) with a minimum sensitivity of 1 in 10 ⁵ nucleated cells or higher
Sequencing	Absence of clonal plasma cells by NGS on bone marrow aspirate in which presence of a clone is defined as less
MRD-negative	than two identical sequencing reads obtained after DNA sequencing of bone marrow aspirates using a validated equivalent method with a minimum sensitivity of 1 in 10 ⁵ nucleated cells [§] or higher
Imaging plus MRD-negative	MRD negativity as defined by NGF or NGS plus disappearance of every area of increased tracer uptake found at baseline or a preceding PET/CT or decrease to less mediastinal blood pool standardized uptake value (SUV) or decrease to less than that of surrounding normal tissue ¹
Standard IMWG response c	riteria ^{ll}
Stringent complete response	Complete response as defined below plus normal FLC ratio ^{**} and absence of clonal cells in bone marrow biopsy by immunohistochemistry (κ/λ ratio ≤4:1 or ≥1:2 for κ and λ patients, respectively, after counting ≥100 plasma cells) ^{††}
Complete response	Negative immunofixation on the serum and urine and disappearance of any soft tissue plasmacytomas and <5% plasma cells in bone marrow aspirates
Very good partial response	Serum and urine M-protein detectable by immunofixation but not on electrophoresis or ≥90% reduction in serum M-protein plus urine M-protein level <100 mg per 24 h
Partial response	 ≥50% reduction of serum M-protein plus reduction in 24-h urinary M-protein by ≥90% or to <200 mg per 24 h; If the serum and urine M-protein are unmeasurable, a ≥50% decrease in the difference between involved and uninvolved FLC levels is required in place of the M-protein criteria; If serum and urine M-protein are unmeasurable, and serum-free light assay is also unmeasurable, ≥50% reduction in plasma cells is required in place of M-protein, provided baseline bone marrow plasma-cell percentage was ≥30%. In addition to these criteria, if present at baseline, a ≥50% reduction in the size (sum of the products of the maximal perpendicular diameters [SPD] of measured lesions)^{§§} of soft tissue plasmacytomas is also required
Minimal response	≥25% but ≤49% reduction of serum M-protein and reduction in 24-h urine M-protein by 50%–89%. In addition to the above listed criteria, if present at baseline, a ≥50% reduction in SPD ^{§§} of soft tissue plasmacytomas is also required

Is depth of response important

Paiva. Blood 2015

Is depth of response important

Techniques available

Multi-parametric flow cytometry Ig allele specific oligonucleotide – PCR Next generation sequencing Functional Imaging with PET/CT

So, can myeloma be cured ??

Approx. 30% of patients undergoing HDT will achieve long term DFS (>10 years)

Total Therapy (1, 2, 3) Majority of CR patients with 10-yr DFS (94%) were also MRD negative

Still a research question as MRD techniques are not widely available

Paiva. Blood 2015 Barlogie. Blood 2014

Considerations before starting therapy

- ? candidate for HDT and auto-HCT
- If yes, its best to avoid alkylator based chemotherapy regimens (esp prolonged Rx)
- Avoid prolonged immunomodulator therapy
- Also its prudent to collect enough stem cells for two autologous stem cell transplants
- Age and renal functions are not absolute contraindications for autograft

Treating elderly / transplant ineligible patients

- Melphalan and prednisone had been the *standard* chemotherapy in use for over 40 years
- Partial response rate 50-60%
- Complete response rate ~1%
- Median overall survival 3 years
- Until recently combination chemotherapy offered no survival benefit over MP and was more toxic

Alexanian R. JAMA. 1969;208(9):1680-5. Myeloma Trialists' Collaborative Group. J Clin Oncol. 1998;16:3832.

- Bortezomib approved by FDA in 2003
- Lenalidomide approved by FDA in Dec 2005
- Thalidomide approved by FDA in May 2006

Study arm	Subclass of cohorts	Pre-bortezomib era (1991-2002)			Post- bo 2011)	rtezom	Z score	P Value	
		N	RS (%)	Relative Standard Error (SE) (%)	N	RS (%)	Relative Standard Error (SE) (%)		
Gender	Male	13,066	34.6	0.5	17,765	46.1	0.6	15.904	<0.0001
	Female	11,580	32.1	0.5	14,917	43.7	0.6	14.765	<0.0001
Race	Caucasian	18,836	32.9	0.4	23,981	45.0	0.5	19.259	<0.0001
	African American	4,274	34.7	0.8	6,391	45.1	0.9	8.488	<0.0001
Age	20-59	6,358	48.1	0.6	9,439	60.2	0.7	12.920	<0.0001
group	>=60	18,288	27.8	0.4	23,243	38.4	0.5	16.606	<0.0001

Blood 2014 124:2639 Cancer Epidimol 2015 Oct;39(5):693-9

Study	Treatment schema/duration	No. of patients in treatment arm	Median follow-up	Best response	PFS	os
MPT meta-analysis* ⁵⁶	MPT for 8 cycles, 12 cycles, or until relapse	1685 (total no. of patients included)	Not available	VGPR: 25%	20.3 mo	39.3 mo
MPT (FIRST trial)74	MPT for 12 cycles	547	37 mo	CR: 9.3%	21.2 mo	4-y OS: 51.4%
CTD ⁶⁴	CTD for up to 9 cycles (6 cycles minimum)	426	44 mo	CR: 13.1%	13 mo	33.2 mo
VMP (VISTA trial) ⁶⁶	VMP for 9 cycles	344	60.1 mo	CR: 30%	21.7 mo	56.4 mo
MPR-R ⁷³	MPR for 9 cycles, followed by R until disease progression	152	30 mo	CR: 9.9%	31 mo	4-y OS: 59%
VMPT-VT ^{67,69}	VMPT for 9 cycles, followed by VT for 2 y or until progression or relapse	254	54 mo	CR: 38%	35.3 mo	5-y OS: 61%
VMP/VTP-VT ^{68,70}	VMP or VTP for 6 cycles, followed by VT for up to 3 y	91	46 mo	CR: 46%	39 mo	5-y OS: 69%
Rd continuous (FIRST trial)74	Rd until disease progression	535	37 mo	CR: 15.1%	25.5 mo	4-y OS: 59.4%
BP ⁷⁶	BP until maximum remission or disease progression	68	Not available	CR: 32%	TTF: 14 mo	32 mo

MPT superior to MP – better PFS and OS CTD superior to MP – UK regimen

VMP (standard dose) superior to MP – PFS and OS (overcame cytogenetics, 13% gr 3 PN) Once weekly dosing of velcade or subcutaneous dosing of velcade

MPR-R VMPT-VT Rd

VD (n=168) iv, standard dose VTD (n=167) ; iv, Thal 100 mg day 1-21 VMP (n=167); + oral MP

27

19

16

ITT

Month

Median PFS (95%CI) 0.9 MPT-T: 20.96 (18.20, 27.47) mPR-R: 18.69 (16.03, 22.08) 0.8 0.7 **PFS Probability** 0.6 0.5 0.4 Two year PFS (95%CI MPT-T: 0.45 (0.37, 0.53) 0.3 mPR-R: 0.37 (0.30, 0.46) Similarly M (9mg/m2)PT-T = m (5m/m2) PR0.2 MPT-T (n=154) 0.1 mPR-R slightly better tolerated mPR-R (n=152) 0.0 20 12 16 32 MPT-T 154140 126 111 33 76 mPR-R 152130 115 98 83 81 29 21

Niesvizky. JCO 2015 Raikumar Blood 2015

MPT vs. Rd(18) vs. Rd continuous

341 297 239 179 123

Rd continuous was superior Secondary malignancy more in MPT

75 35 14 2

VMP and VTD are commonly used regimens

Subcutaneous velcade / weekly infusions of velcade

Rd is a good option as well

Continuous therapy or maintenance strategy useful to improved outcomes – stop alkylator and dexamethasone after 1 year

Depth of initial response correlates well with outcome – so should be the goal

Transplant Eligible Patients

Induction \rightarrow High dose melphalan / auto-transplant \rightarrow ? Consolidation \rightarrow Maintenance

Induction regimen

Single or tandem (double) transplant

Early or late transplantation

Role of consolidation

Maintenance therapy

Obsolete induction regimens

- Vincristine; doxorubicin; dexamethasone (VAD)
- Vincristine; idarubicin; dexamethasone (VID)
- Dexamethasone
- Doxil; vincristine; dexamethasone (DVD)
- Thalidomide; dexamethasone (Thal/dex)

Thalidomide vs. Lenalidomide Induction

	Thal/Dex (n=183)	Rev/Dex (n=228)
CR (%)	3.3	13.6*
≥ PR (%)	61	8 0*
PFS (median)	17.1 M	26.7 m*
OS (median)	57 m	NR*
Grade 3-4 Neutropenia	0.6%	15%*
Grade 3-4 VTE	15%	9%
Grade 3-4 Peripheral neuropathy	10%	0.9%*

Lenalidomide induction - E4Ao3

Bortezomib induction – IFM 2005-01

Harousseau JL. J Clin Oncol. 2010;28(30):4621-9. Moreau P. Blood. 2011;117(11):3041-4.

TD vs. VTD – GIMEMA Trial

Grade 3-4 PN with VTD 10%
VTD improved outcomes of high-risk patients

Cavo M. Lancet. 2010;376(9758):2075-85. Cavo M. Blood. 2012;120:9-19 So how do you treat (induction) your newly diagnosed symptomatic myeloma patient?

Velcade or lenalidomide based regimens Triplet vs. doublet Dexamethasone dose

Primary Therapy for Transplant Candidates						
(assess for respo	inse after 2 cycles)					
Preferred Regimens:	Other Regimens:					
 Bortezomib/cyclophosphamide/dexamethasone 	 Bortezomib/dexamethasone (category 1)⁶ 					
Bortezomib/doxorubicin/dexamethasone (category 1)	 Bortezomib/thalidomide/dexamethasone (category 1) 					
 Bortezomib/lenalidomide⁵/dexamethasone (category 1) 	 Carfilzomib^{9,10}/lenalidomide⁵/dexamethasone 					
	 Ixazomib/lenalidomide⁵/dexamethasone 					
	 Lenalidomide⁵/dexamethasone (category 1)⁶ 					
Primary Therapy for N	on-Transplant Candidates					
(assess for resp	onse after 2 cycles)					
Preferred Regimens	Other Regimens					
 Bortezomib/cyclophosphamide/dexamethasone 	Bortezomib/dexamethasone ⁶					
Bortezomib/lenalidomide/dexamethasone (category 1)	Carfilzomib ¹⁰ /lenalidomide/dexamethasone (category 2B)					
 Lenalidomide/low-dose dexamethasone (category 1)^{6,7} 	Ixazomib/lenalidomide/dexamethasone					
Maintenance Therapy						
Bortezomib						
Lenalidomide ⁸ (category 1)						

Velcade based triplets improve response rates, depth of response compared to doublets and are preferred

Phase I/II VRD – PR 100%; VGPR 74% and nCR/CR 54%

Phase II comparison **VD**+**Revlimid** = **VD**+**Cytoxan** (EVOLUTION study) and no additional benefit with VDCR

Meta-analysis of VDC vs. **VTD** showed CR 6% vs 34% and VGPR 27% vs 62% (Br J Hem'14)

SWOG S077 – VRD vs RD – VRD improved OS, PFS and response rates

HOVON-65 – VAD (old) -> T vs. PAD -> velcade maintenance – better PFS and OS in velcade arm (especially pertinent in the high risk cytogenetics

CyBorD – 61% VGPR and 39% nCR/CR rated

Role of Autologous Transplantation

Superior OS and PFS in the transplant arm

Attal M . NEJM. 1996;335:91-7. Child JA NEJM. 2003;348:1875-83. Palumbo NEIM 2014

Role of Auto with newer agents

HDT/auto vs. VMP intensification (vel/mel/pred) after CyBorD in myeloma - better PFS and CR rates with auto suggesting upfront auto is still beneficial in fit myeloma patients (n=1510). <u>https://ash.confex.com/ash/2016/webprogram/Paper91284.html</u>

Early vs. delayed Transplantation

Time without symptoms, treatment, and treatment toxicity (TWiSTT) – QoL metric

In the era of novel agents:

- Retrospective studies x 2
- Early vs late auto-HCT had similar OS and PFS
- Delayed auto can be considered in standard risk (remember to collect)
- Ongoing phase III study is evaluating the question (DFCI 10-106)
- NCCN recommends early HCT based on Fermand data

Fermand JP. Blood. 1998;92(9):3131-6.

msmart.org Moreau Blood 2015

Is Autologous transplant curative?

Martinez-Lopez J. Blood. 2011;118:529-534.

Tandem Auto

Table 2. Randomized studies comparing single vs tandem ASCT

Study	First ASCT	Consolidation s/p first ASCT	Maintenance	EFS	OS	Salvage ASCT at relapse
IFM94 ⁵⁴	MEL140 + TBI (single arm) MEL140 (tandem arm)	None vs MEL140 + TBI	Interferon α	Median EFS: 25 (single) vs 30 (tandem) mo (P = .03)	Median OS: 48 (single) vs 58 (tandem) mo (P = .01)	22% (single arm) vs 26% (tandem arm)
Bologna 76 ⁵⁵	MEL200	None vs MEL120 + busulfan	Interferon α	Median EFS: 23 (single) vs 25 (tandem) mo (P = .001)	7-y OS: 46% (single) vs 43% (tandem) (P = .9)	33% (single arm) vs 10% (tandem arm)
GMMG- HD2 ¹³	MEL200	None vs second ASCT with MEL200	Interferon α	Median EFS: 25 (single) vs 28.7 (tandem) mo (P = .53)	Median OS: 73 (single) vs 75.3 (tandem) mo (P = .33)	26% (single arm) vs 24% (tandem arm)
BMT CTN 0702 (NCT01109004)	MEL200	None vs RVD ×4 vs second ASCT with MEL200	Len until progression for all arms	Not yet reported	Not yet reported	Not yet reported

s/p, status-post; TBI, total body irradiation.

BMTCTN 0702 – StaMINA <u>https://ash.confex.com/ash/2016/webprogram/Paper98809.html</u> Tandem auto-HCT and post-auto VRd consolidation – similar PFS and OS compared to single auto-HCT

Unclear subsets of patients – those not achieving VGPR with 1st auto or HR-FISH will benefit from tandem auto.

Post-auto consolidation

Table 3. Randomized studies involving consolidation therapy post-ASCT

Reference	Consolidation regimen	Response rates (pre- and post-) %	PFS	OS
23, 56	VTD vs TD	nCR/CR rates VTD: 63→73 TD: 55→61	3-y PFS: 60% (VTD) vs 48% (TD) (P = .042)	3-y OS: 90% (VTD) vs 88% (TD) (P = .39)
24	V vs none	nCR/CR rates V: 20→45 None: 21→35	Median PFS: 27 (V) vs 20 (none) mo (P = .05)	Median OS not reached for either arm ($P = .4$)
25	V vs none	≥VGPR rates V: 55→62 None: 59→48	Median PFS: 33.6 (V) vs 27.8 (none) mo (P = .0058)	Median OS not reached for either arm ($P = .75$)

V. bortezomib: VGPR. verv-good-partial response.

Intent of consolidation is to improve MRD status (depth of response) Consolidation improves response but no OS benefit seen

BMTCTN 0702 – StaMINA <u>https://ash.confex.com/ash/2016/webprogram/Paper98809.html</u> - No PFS or OS benefit

Improving nCR/CR rates in the placebo arm maybe due to long half life if Ig

Maintenance Therapy

- Interferon and prednisone no longer appropriate
- Thalidomide maintenance after tandem autografting has shown survival benefit (IFM 99-02)
- Thalidomide maintenance after single autograft has PFS but no OS benefit
- Thalidomide maintenance not appropriate in patients with high-risk cytogenetics

Lenalidomide Maintenance

Lenalidomide	307	267	236	216	172	103	49	10	1
Placebo	307	255	211	169	102	57	22	6	1

McCarthy P. NEJM 2012; 366:1770-1781. Attal M. NEJM 2012; 366:1782-1791.

Bortezomib Maintenance - HOVON-65/ GMMG-HD4 Trial

Sonneveld P. J Clin Oncol. 2012;30(24):2946-55.

A Practical Approach

- All transplant eligible patients receive 4-6 cycles of induction with intent to transplant
- Induction options include VRd, PAD, CyBorD and KRd, VD, Rd
- Refractory disease not contraindication for transplant
- Consider Maintenance therapy consider velcade in high risk disease

Therapy for Previously Treated Multiple Myeloma					
Preferred Regimens:	Other Regimens:				
 Repeat primary induction therapy (if relapse at >6 mo) 	Bendamustine				
 Bortezomib/dexamethasone (category 1)⁶ 	Bendamustine/bortezomib/dexamethasone				
 Bortezomib/cyclophosphamide/dexamethasone 	· Dendandstine/bortezonnb/dexamethasone				
 Bortezomib/lenalidomide/dexamethasone 	Bendamustine/lenalidomide/dexamethasone				
 Carfilzomib¹⁰/dexamethasone (category 1)^{6,} 	 Bortezomib/liposomal doxorubicin (category 1)⁶ 				
 Carfilzomib¹⁰/lenalidomide/dexamethasone (category 1)¹² 	Cyclophosphamide/lenalidomide/dexamethasone				
 Daratumumab^{13,14} Daratumumab¹⁴/bortezomib/dexamethasone (category 1) 	• Devamethasone/cyclonhosphamide/etoposide/cisplatin (DCED) ¹⁹				
 Daratumumab¹⁴/lenalidomide/dexamethasone (category 1) 	Dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/				
 Elotuzumab¹⁵/lenalidomide/dexamethasone (category 1)¹² 	etoposide (DI-PACE) ± Bortezomib (VID-PACE)**				
 Ixazomib¹⁶/lenalidomide/dexamethasone (category 1)¹² 	Elotuzumab/bortezomib/dexamethasone				
 Lenalidomide/dexamethasone¹⁷ (category 1)⁶ 	High-dose cyclophosphamide				
 Pomalidomide¹⁸/dexamethasone¹⁷ (category 1)⁶ 	• Ixazomib ¹⁶ /dexamethasone ⁶				
Pomalidomide ¹⁸ /bortezomib/dexamethasone	• Panobinostat ²⁰ /bortezomib/dexamethasone (category 1)				
 Pomalidomide¹⁸/carfilzomib¹⁰/dexamethasone 					
	• Panobinostat-"/cartilzomib", "				
	 Pomalidomide¹⁸/cyclophosphamide/dexamethasone 				

Table 2. Selected phase 3 trials in relapsed disease

Reference	Name of trial	No. prior lines	Arm	Ν	PFS*	HR	ORR	≥VGPR	≥CR
Dimopoulos et al ²⁷	ENDEAVOR	1-3	Kd	464	18.7	0.53	77%	54%	13%
			Vd	465	9.4		63%	29%	6%
Moreau et al ²⁹	TOURMALINE-MM1	1-3	IRd	360	20.6	0.74	78%	48%	12%
			Rd	362	14.7		72%	39%	7%
Lonial et al ⁴²	ELOQUENT-2	1-3	Elo-Rd	321	19.4	0.7	79%	33%	4%
			Rd	325	14.9		66%	28%	7%
Stewart et al ²⁸	ASPIRE	1-3	KRd	396	26.3	0.69	87%	70%	32%
			Rd	396	17.6		67%	40%	9%
San Miguel et al ³⁶	PANORAMA 1	1-3	Pano-Vd	387	11.99	0.63	61%		11%
-			Vd	381	8.08		55%		6%
San Miguel et al ³⁰	NIMBUS (MM-003)	≥2†	Pd	302	4.0	0.48	31%	6%	1%
-			D	153	1.9		10%	1%	0%
Palumbo et al ⁴⁸	CASTOR	≥1	Vd-dara	251	NE	0.39	82.9%	59.2%	19.2%
			Vd	247	7.2		63.2%	29.1%	9%
Dimopoulos et al ⁴⁹	POLLUX	≥1	Rd-dara	286	NE	0.37	93%	76%	43%
			Rd	283	18.4		76%	44%	19%

Thank you

QUESTIONS?

MP vs. MPT – Upfront Phase III Trials

	Arms	Ν	≥ PR (%)	CR (%)	PFS	OS	Dosing
Facon T (IFM 99-06) Lancet; 2007	MP MPT Mel100	196 125 126	35 76* 65	2 13 18*	18.7 m 27.5 m* 19.4 m	33.2 m 51.6 m* 38.3 m	M=0.25mg/kg; P=2mg/kg D1-4 ; T=400mg/d (max) repeated Q 6 weeks x 12
Hulin C (IFM 01/01) JCO; 2009	MP MPT	116 113	31 62*	1 7*	18 m 24 m*	29 m 44 m*	M=0.2mg/kg; P=2mg/kg D1-4 ; T=100mg/d (max) repeated Q 6 weeks x 12
Palumbo A (GIMEMA) Lancet 2006 & Blood; 2008	MP MPT	164 167	48 69*	4 16*	14.5 21.8*	47.6 m 45 m	M=4mg/m ² ; P=40mg/m ² D1-7; T=100mg/d repeated Q 4 weeks x 6; then maintenance T
Wijermans P (HOVON 49) JCO; 2010	MP MPT	168 165	45 66*	NR NR	14 % 2yr 34% 2yr*	30 % 4yr 43% 4yr*	M=0.25mg/kg; P=1mg/kg D1-5 ; T=200mg/d repeated Q 4 weeks
Waage A (Nordic Group) Blood; 2010	MP MPT	175 182	40 57 [*]	7 23*	14 m 15 m	32 m 29 m	M=0.25mg/kg; P=100mg D1-4 ; T=200-400mg/d repeated Q 6 weeks